If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28n^2+16n=0
a = 28; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·28·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*28}=\frac{-32}{56} =-4/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*28}=\frac{0}{56} =0 $
| 0.25x+1.6=0.3 | | 8x+7=10x+10 | | 5+6x=72 | | 159=r+35.7 | | 3x-6=10x-3 | | 30=11x-3 | | 13x+2+7x+1=63 | | 18x+27=45 | | 2x+8=2(x+4)2 | | 3m-(7m+9)=2 | | 7c-84=-21 | | 1/3e=2 | | 4x+72=12x | | 8=2/3v | | -5=x+(+17) | | 5x-9=-3x-19+5x | | 8x+40=8-(1-7x) | | x+(+12)=-7 | | n+8=20+4 | | 43-26=-x | | 0=2w^2-w-45 | | -5t=-4t−5 | | n+6=8+2 | | 9=8f | | (3x-12)+(x+30)+(2x)=180 | | 20000(0.95^t)=20t | | x-7/5=-2 | | -3.3+x/7=-14.5 | | 10+.32x=26 | | 7(10x-5)=135 | | 2/7y-5/6+5/7y=7 | | 2(y+2=6 |